Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas.
نویسندگان
چکیده
The p53 pathway is critical for tumor suppression, as the majority of human cancer has a faulty p53. Here, we identified RNPC1, a p53 target and a RNA-binding protein, as a critical regulator of p53 translation. We showed that ectopic expression of RNPC1 inhibited, whereas knockdown of RNPC1 increased, p53 translation under normal and stress conditions. We also showed that RNPC1 prevented cap-binding protein eIF4E from binding p53 mRNA via its C-terminal domain for physical interaction with eIF4E, and its N-terminal domain for binding p53 mRNA. Consistent with this, we found that RNPC1 directly binds to p53 5' and 3'untranslated regions (UTRs). Importantly, we showed that RNPC1 inhibits ectopic expression of p53 in a dose-dependent manner via p53 5' or 3' UTR. Moreover, we showed that loss of RNPC1 in mouse embryonic fibroblasts increased the level of p53 protein, leading to enhanced premature senescence in a p53-dependent manner. Finally, to explore the clinical relevance of our finding, we showed that RNPC1 was frequently overexpressed in dog lymphomas, most of which were accompanied by decreased expression of wild-type p53. Together, we identified a novel p53-RNPC1 autoregulatory loop, and our findings suggest that RNPC1 plays a role in tumorigenesis by repressing p53 translation.
منابع مشابه
Glycogen synthase kinase 3 promotes p53 mRNA translation via phosphorylation of RNPC1.
The RNPC1 RNA-binding protein, also called Rbm38, is a target of p53 and a repressor of p53 mRNA translation. Thus, the p53-RNPC1 loop is critical for modulating p53 tumor suppression, but it is not clear how the loop is regulated. Here, we showed that RNPC1 is phosphorylated at Ser195 by glycogen synthase kinase 3 (GSK3). We also showed that GSK3 promotes p53 mRNA translation through phosphory...
متن کاملRegulation of Mdm2 mRNA Stability by RNA-binding Protein RNPC1
The murine double minute-2 (Mdm2) oncoprotein is an E3 ligase and a key regulator of a variety of fundamental cellular processes [1]. Mdm2 was originally identified as being amplified on double-minute chromosomes in transformed mouse fibroblasts [2]. Soon after its discovery, Mdm2 was found to be a negative regulator of tumor suppressor p53. The importance of Mdm2 in controlling the p53 activit...
متن کاملRNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability.
P63, a p53 family tumor suppressor, is involved in many cellular processes, including growth suppression and differentiation. Thus, p63 activity needs to be tightly controlled. Here, we found that RNPC1, a RNA-binding protein and a target of the p53 family, regulates p63 mRNA stability and consequently p63 activity. Specifically, we showed that overexpression of RNPC1 decreases, whereas knockdo...
متن کاملSequential transcription factor targeting for diffuse large B-cell lymphomas.
Transcription factors play a central role in malignant transformation by activating or repressing waves of downstream target genes. Therapeutic targeting of transcription factors can reprogram cancer cells to lose their advantages in growth and survival. The BCL6 transcriptional repressor plays a central role in the pathogenesis of diffuse large B-cell lymphomas (DLBCL) and controls downstream ...
متن کاملB-Cell Lymphomas Sequential Transcription Factor Targeting for Diffuse Large
Transcription factors play a central role in malignant transformation by activating or repressing waves of downstream target genes. Therapeutic targeting of transcription factors can reprogram cancer cells to lose their advantages in growth and survival. The BCL6 transcriptional repressor plays a central role in the pathogenesis of diffuse large B-cell lymphomas (DLBCL) and controls downstream ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 25 14 شماره
صفحات -
تاریخ انتشار 2011